3.1.59 \(\int (b \cos (c+d x))^{5/2} (A+C \cos ^2(c+d x)) \sec ^6(c+d x) \, dx\) [59]

3.1.59.1 Optimal result
3.1.59.2 Mathematica [A] (verified)
3.1.59.3 Rubi [A] (verified)
3.1.59.4 Maple [B] (verified)
3.1.59.5 Fricas [C] (verification not implemented)
3.1.59.6 Sympy [F(-1)]
3.1.59.7 Maxima [F]
3.1.59.8 Giac [F]
3.1.59.9 Mupad [F(-1)]

3.1.59.1 Optimal result

Integrand size = 33, antiderivative size = 115 \[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=-\frac {2 b^2 (3 A+5 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {2 A b^5 \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {2 b^3 (3 A+5 C) \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}} \]

output
2/5*A*b^5*sin(d*x+c)/d/(b*cos(d*x+c))^(5/2)+2/5*b^3*(3*A+5*C)*sin(d*x+c)/d 
/(b*cos(d*x+c))^(1/2)-2/5*b^2*(3*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1 
/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/d 
/cos(d*x+c)^(1/2)
 
3.1.59.2 Mathematica [A] (verified)

Time = 0.87 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.70 \[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=-\frac {2 b^4 \left ((3 A+5 C) \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )-\frac {1}{2} (3 A+5 C) \sin (2 (c+d x))-A \tan (c+d x)\right )}{5 d (b \cos (c+d x))^{3/2}} \]

input
Integrate[(b*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^6,x]
 
output
(-2*b^4*((3*A + 5*C)*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] - ((3*A 
+ 5*C)*Sin[2*(c + d*x)])/2 - A*Tan[c + d*x]))/(5*d*(b*Cos[c + d*x])^(3/2))
 
3.1.59.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {3042, 2030, 3491, 3042, 3116, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^6(c+d x) (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^6}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b^6 \int \frac {C \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )^2+A}{\left (b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^{7/2}}dx\)

\(\Big \downarrow \) 3491

\(\displaystyle b^6 \left (\frac {(3 A+5 C) \int \frac {1}{(b \cos (c+d x))^{3/2}}dx}{5 b^2}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^6 \left (\frac {(3 A+5 C) \int \frac {1}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{5 b^2}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle b^6 \left (\frac {(3 A+5 C) \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \cos (c+d x)}dx}{b^2}\right )}{5 b^2}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^6 \left (\frac {(3 A+5 C) \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}\right )}{5 b^2}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b^6 \left (\frac {(3 A+5 C) \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{b^2 \sqrt {\cos (c+d x)}}\right )}{5 b^2}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^6 \left (\frac {(3 A+5 C) \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2 \sqrt {\cos (c+d x)}}\right )}{5 b^2}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle b^6 \left (\frac {(3 A+5 C) \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}}\right )}{5 b^2}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

input
Int[(b*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^6,x]
 
output
b^6*((2*A*Sin[c + d*x])/(5*b*d*(b*Cos[c + d*x])^(5/2)) + ((3*A + 5*C)*((-2 
*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^2*d*Sqrt[Cos[c + d*x]] 
) + (2*Sin[c + d*x])/(b*d*Sqrt[b*Cos[c + d*x]])))/(5*b^2))
 

3.1.59.3.1 Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3491
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x 
_)]^2), x_Symbol] :> Simp[A*Cos[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m 
+ 1))), x] + Simp[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1))   Int[(b*Sin[e + f* 
x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]
 
3.1.59.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(601\) vs. \(2(127)=254\).

Time = 4.55 (sec) , antiderivative size = 602, normalized size of antiderivative = 5.23

\[-\frac {2 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{2} \left (24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+40 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) C \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-20 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+12 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-40 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+20 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+10 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-5 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{5 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\]

input
int((cos(d*x+c)*b)^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^6,x)
 
output
-2/5*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2/sin(1 
/2*d*x+1/2*c)^3/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2* 
d*x+1/2*c)^2-1)*(24*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*A*(sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d 
*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4+40*cos(1/2*d*x+1/2*c)*C*sin(1/2*d* 
x+1/2*c)^6-20*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1 
/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*A*cos(1/ 
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin 
(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d 
*x+1/2*c)^2-40*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+20*C*(sin(1/2*d*x 
+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/ 
2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2* 
c)^2-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell 
ipticE(cos(1/2*d*x+1/2*c),2^(1/2))+10*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2 
*c)^2-5*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El 
lipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4*b+b*sin(1/2* 
d*x+1/2*c)^2)^(1/2)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d
 
3.1.59.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.26 \[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\frac {-i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} b^{\frac {5}{2}} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} b^{\frac {5}{2}} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left ({\left (3 \, A + 5 \, C\right )} b^{2} \cos \left (d x + c\right )^{2} + A b^{2}\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{5 \, d \cos \left (d x + c\right )^{3}} \]

input
integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorith 
m="fricas")
 
output
1/5*(-I*sqrt(2)*(3*A + 5*C)*b^(5/2)*cos(d*x + c)^3*weierstrassZeta(-4, 0, 
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + I*sqrt(2)*(3* 
A + 5*C)*b^(5/2)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*((3*A + 5*C)*b^2*cos(d*x + c)^ 
2 + A*b^2)*sqrt(b*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)
 
3.1.59.6 Sympy [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\text {Timed out} \]

input
integrate((b*cos(d*x+c))**(5/2)*(A+C*cos(d*x+c)**2)*sec(d*x+c)**6,x)
 
output
Timed out
 
3.1.59.7 Maxima [F]

\[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \sec \left (d x + c\right )^{6} \,d x } \]

input
integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorith 
m="maxima")
 
output
integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c))^(5/2)*sec(d*x + c)^6, x)
 
3.1.59.8 Giac [F]

\[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \sec \left (d x + c\right )^{6} \,d x } \]

input
integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorith 
m="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c))^(5/2)*sec(d*x + c)^6, x)
 
3.1.59.9 Mupad [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^6} \,d x \]

input
int(((A + C*cos(c + d*x)^2)*(b*cos(c + d*x))^(5/2))/cos(c + d*x)^6,x)
 
output
int(((A + C*cos(c + d*x)^2)*(b*cos(c + d*x))^(5/2))/cos(c + d*x)^6, x)